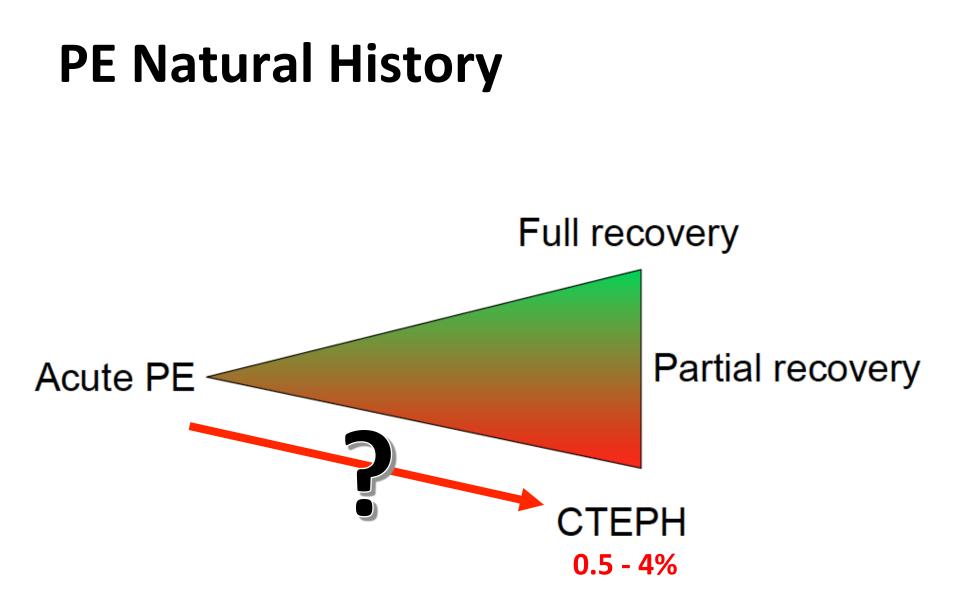
Chronic Thromboembolic Pulmonary Hypertension

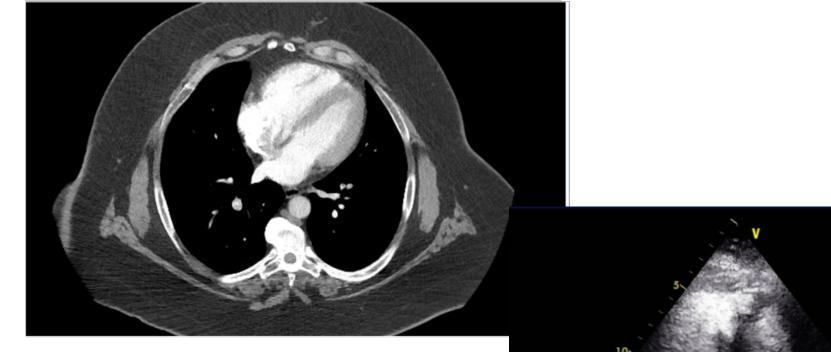

Fellows Core Curriculum February 17, 2017

Quyen Nguyen

Belinda Rivera-Lebron

What is CTEPH?

Persistent thromboemboli after acute PE + Pulmonary hypertension


Objectives

- Explore the outcomes of acute PE
- Use specific tests to assess cardiopulmonary impairments after PE
- Develop an algorithm for when and how to diagnose CTEPH after PE
- Discuss management options for CTEPH

Ms. BK 44 yr old morbidly obese female BMI 63 Hx OSA on CPAP 3 days of worsening DOE dx PE at OSH by CTA Presyncope, no syncope +troponin and BNP, large RV PESI 86, sPESI 1 = class III intermediate risk Remained hemodynamically stable No thrombolytic therapy UFH -> warfarin •

CTA + Echo

Why did I get a clot?

Will How long will it take for the clots to go away?

Will I need to have a lot of frequent tests after I leave the hospital?

Will I have any long term problems from this?

When can I go back to work?

What are my activity restrictions?

hners?

Am Lat rick for another clot?

What kind of follow up am I going to need?

How long will it take for the clots to go away?

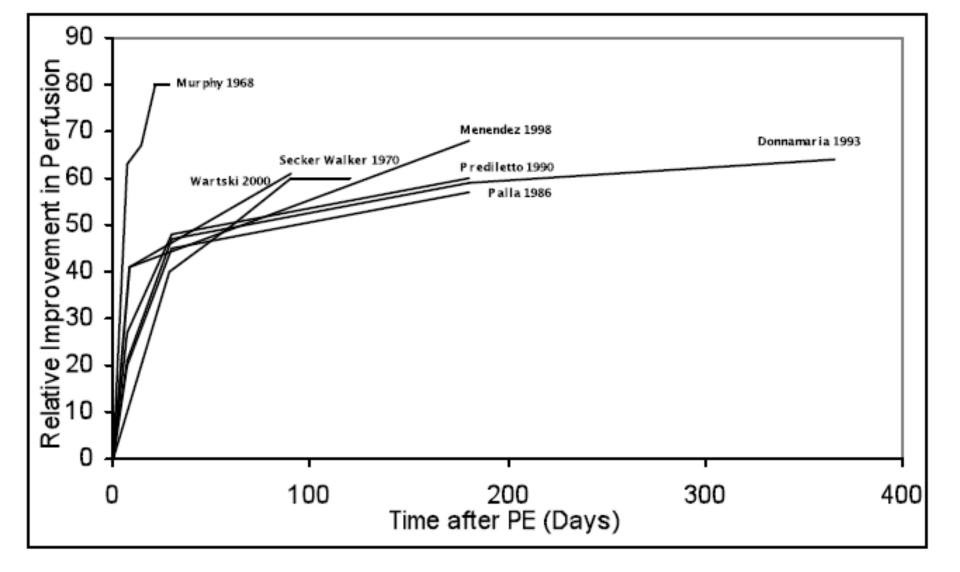
After acute PE, at what time point is 50% of clot resolved?

2-4 weeks

Serial angiograms and V/Q scans in patients diagnosed with PE and treated with heparin

Time after Rx	% Resolution
2 hours	Negligible
24 hours	10%
7 days	40%
2-4 weeks	50%

Dong et al. Cochrane Databse Syst Rev 2009


What % of patients achieve complete resolution of thrombus, after 12 months of anticoagulation for PE ?

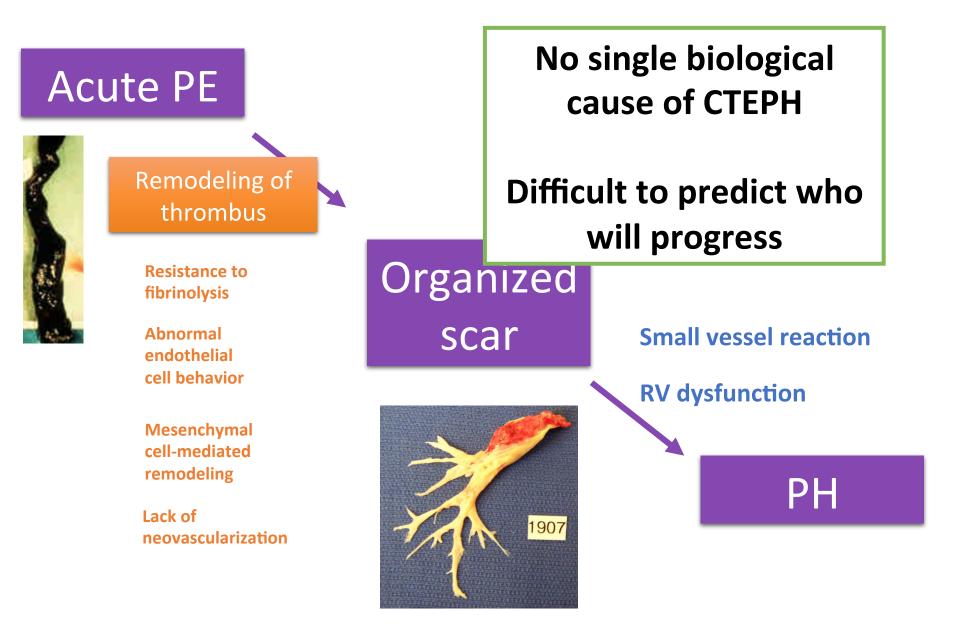
Study	n	Time of follow up	Imaging Test	% patients with resolution
Alonso-Martinez 2012	166	4.5 mo	СТА	74%
Cosmi 2011	80 93	9 mo	CT Lung perfusion	85% 72%
Stein 2010	79	28 d	СТА	81%
Miniati 2006	320	1 yr	Lung perfusion	65%
Golpe 2012	91	6 mo	СТА	80%
Sanchez 2010	254	12 mo	V/Q	71%
Korknaz 2012	121 146 159	3 mo 6 mo 12 mo	СТА	52% 73% 92%
Aghayev 2013	111	1 yr	СТА	77%
Kaczynska 2008	55	6 mo	CT or lung perfusion	30%
Wartski 2000	157	3 mo	Lung perfusion	34% <u>back</u>

After an acute PE, when does the patient's thrombus resolution rate plateau?

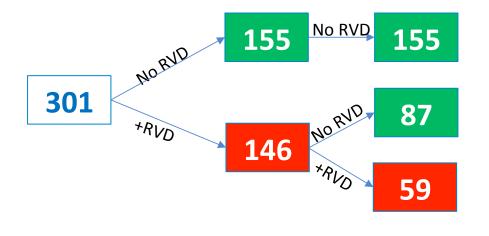
3 months

SPECIAL

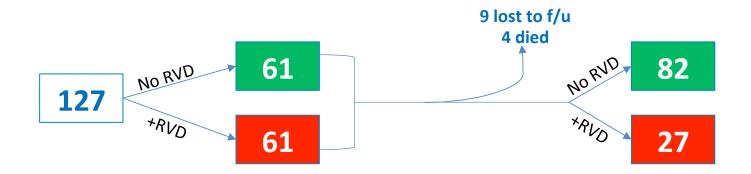
What are the risk factors for incomplete thrombus resolution (despite anticoagulation)?

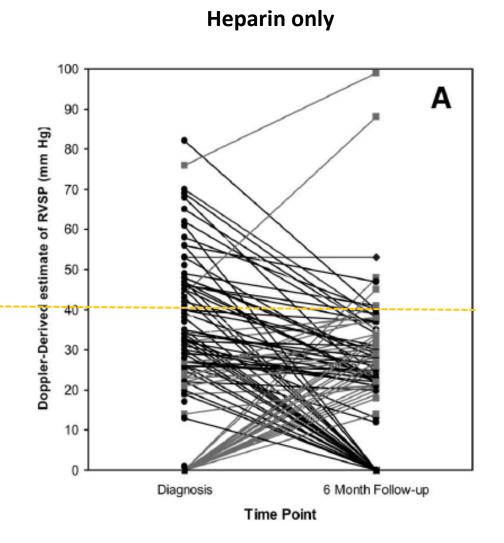

Large thrombus size Central location Older age Longer time between symptoms and diagnosis of PE Prior history of VTE




Take home message

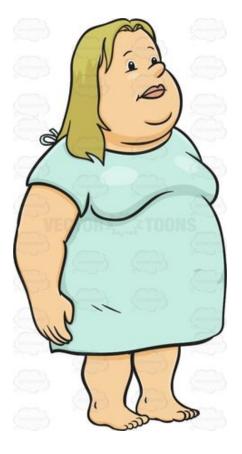
• Bulk of clot resolves early (before 6 months).


 Residual clot more than 12 months out likely represent permanent fibrous scars.



Grifoni et al – acute PE

Stevinson et al – acute non massive PE

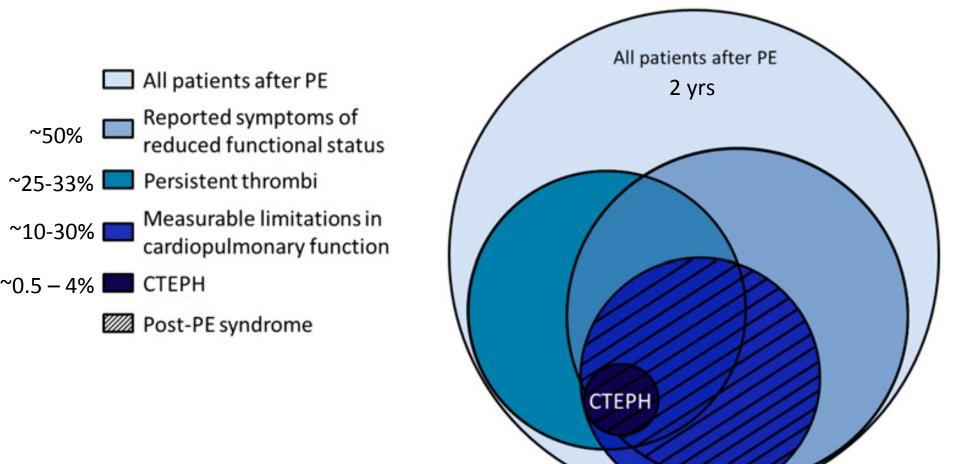

Heparin + tPA

Take home message

 Hemodynamic normalization occurs in majority of patients

 A minority of patients actually get worse

Will I have any long term problems from this?



cont

TRUE OR FALSE: Up to 3 years after adequately treated PE, more than half of patients report poor physical performance.

TRUE

Long term consequences of PE

back

Which of the following is a risk factor for CTEPH in Ms. BK?

A. Submassive PE
B. 1st PE
C. Unprovoked PE
D. A + C

C. Unprovoked PE

Table 1. Risk Factors for Chronic Thromboembolic Pulmonary Hypertension.

Factors specific to pulmonary embolism

Recurrent or unprovoked pulmonary embolism

Large perfusion defects when pulmonary embolism detected

Young or old age when pulmonary embolism detected

Pulmonary-artery systolic pressure >50 mm Hg at initial manifestation of pulmonary embolism

Persistent pulmonary hypertension on echocardiography performed 6 mo after acute pulmonary embolism detected

Chronic medical conditions

Infected surgical cardiac shunts or pacemaker or defibrillator leads

Postsplenectomy

Chronic inflammatory disorders

Thyroid-replacement therapy

Cancer

Thrombotic factors

Lupus anticoagulant or antiphospholipid antibodies

Increased levels of factor VIII

Dysfibrinogenemia

Genetic factors

ABO blood groups other than O

HLA polymorphisms

Abnormal endogenous fibrinolysis

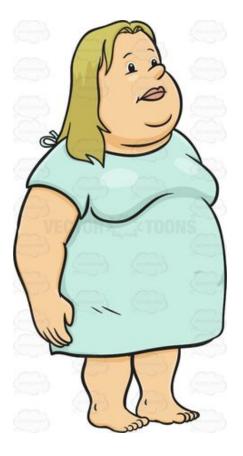
Pengo. NEJM 2004 Wilkens. Intern J Cardiology 2011 Fedullo. AJRCCM 2011 Piazza. NEJM

Take home message

 The interplay of anatomic, hemodynamic, and functional outcomes after PE is complex.

• Many patients will continue to be impaired in some way after acute PE.

Ms. BK 6 months after acute submassive PE • BMI still > 60 Improved dyspnea but clearly worse than • before clot Dyspnea after several yards flat ground ٠ Cannot exercise Hypercoagulabilty labs negative • Continues on warfarin •


How would you evaluate her dyspnea?

Reasons to screen for CTEPH

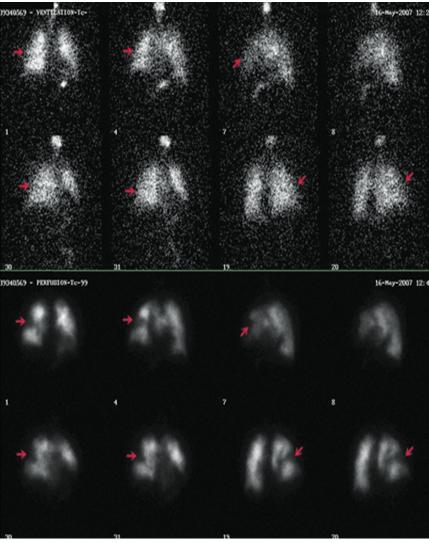
- Fatal if untreated
 - 10% 5 yr-survival mPAP > 50
- Cure is possible
 - Pulmonary thromboendarcterectomy
 - Medical therapy available
- Incidence underestimated
 - PE underrecognized
 - Studies only include pts with documented PE
 - 25-40% pts with CTEPH lack dx of DVT/PE

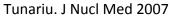
Tapson. PATS 2006 Hoeper MM et al. *Circulation*. 2006 Lewczuk. Chest 201

What kind of testing am I going to need for this?

cont

What is the best test to <u>screen</u> for CTEPH?


V/Q scan


V/Q scan more sensitive than CTA

• use to screen for CTEPH

N = 227	VQ scan	СТА
Sens	97%	51%
Spec	94%	99%
PPV	90%	98%
NPV	98%	80%

Gold standard = pulmonary angiogram

Besides imaging which demonstrates at least one perfusion defect, what additional test must be performed to confirm a diagnosis of CTEPH?

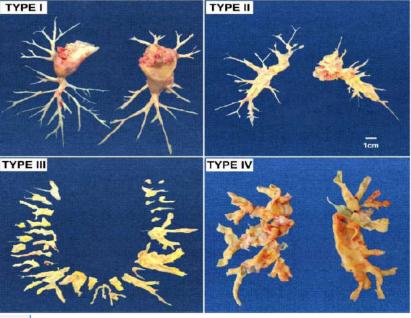
CTEPH Diagnosis

- > 3 mo post-PE
- mPAP \geq 25 & PCWP \leq 15
- At least 1 perfusion defect on V/Q scan or segmental defect in CTA or PA gram

When and how would you screen her for CTEPH?

UPMC post acute PE follow up

After 3 mo anticoagulation:

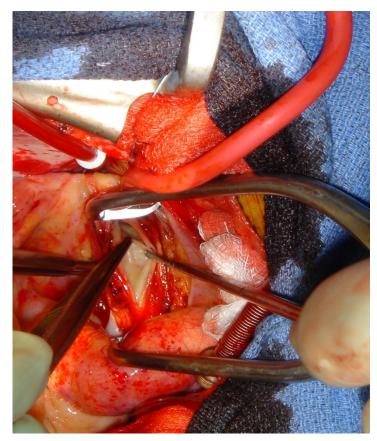

- Echo
- V/Q scan
 - Low Prob \rightarrow CTEPH ruled out
 - Interm Prob \rightarrow CTEPH uncertain
 - High Prob \rightarrow CTEPH likely \rightarrow RHC

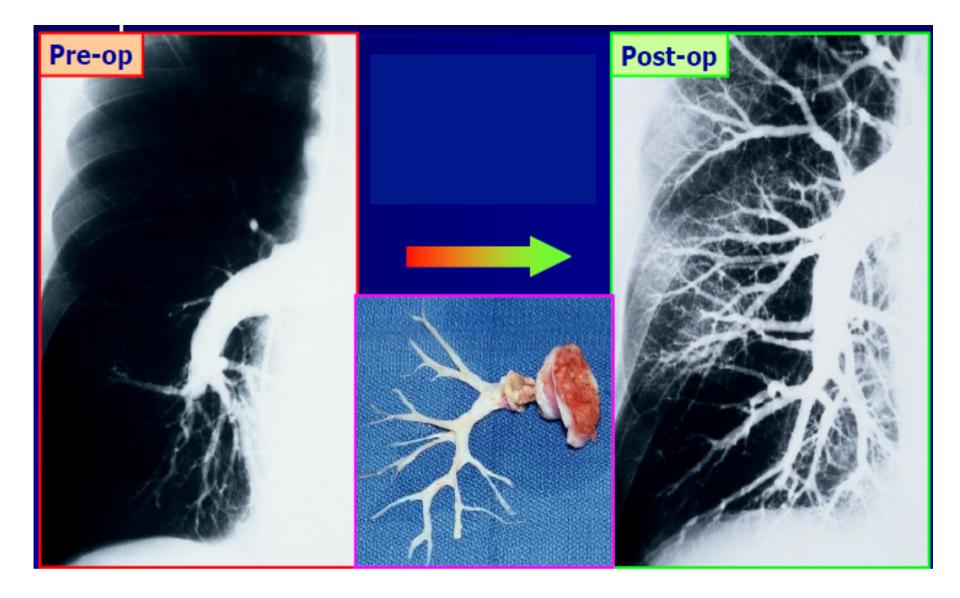
Mr. CT 41 yr old morbidly obese male BMI 43 Hx antiphospholipid antibody Hx recurrent VTE, PE at ages 14, 27, 31 Chronic AC but interruptions • Can still perform work on dairy farm (milks Last 6 months progressive DOE, can't climb 1 flight of stairs 6MWD 260 meters, sat 92%->76%

Treatment of choice: Pulmonary thromboendarterectomy

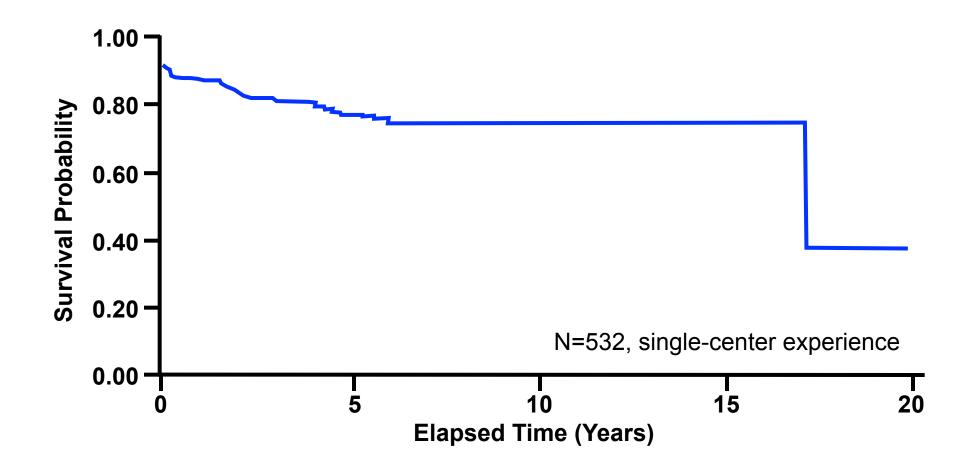
- PTE can be curative
- Factors influencing PTE

Anatomical considerations	Central, accessible clot Assess by dedicated CTA					
Comorbidities	LV dysfunction, renal disease, pulmonary disease, CVA, immunosuppression					
Hemodynamics	higher incidence of residual PAH w/ PVR > 5					
Center experience	UCSD 160 cases/yr UPMC 10-15 cases/yr					
Technical considerations	median sternotomy, other thorac surgeries					

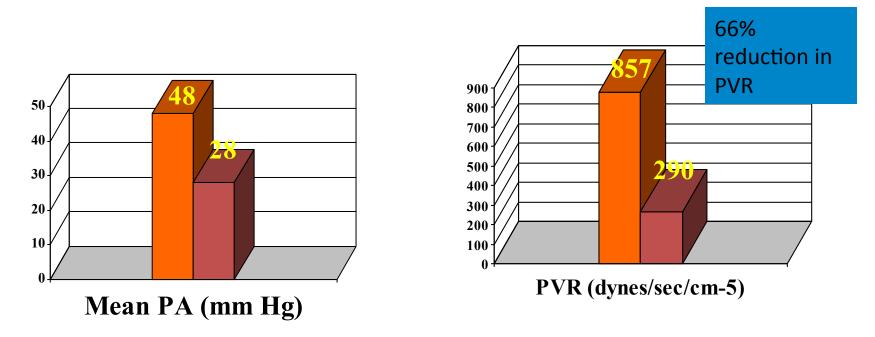

PTE

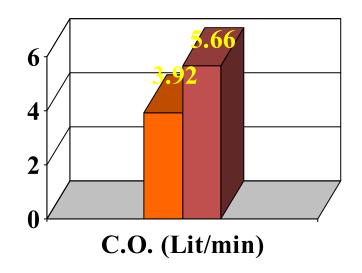

- Pre-op everyone gets IVC filter
- Median sternotomy → Cardiopulmonary bypass → hypothermic circulatory arrest at 20^o (20 min on-10min off to minimize neuro damage and back-bleeding from bronchial A to PA anastomosis)
- Mortality 4-5% (except if PVR > 12, mortality 10%)

Median sternotomy

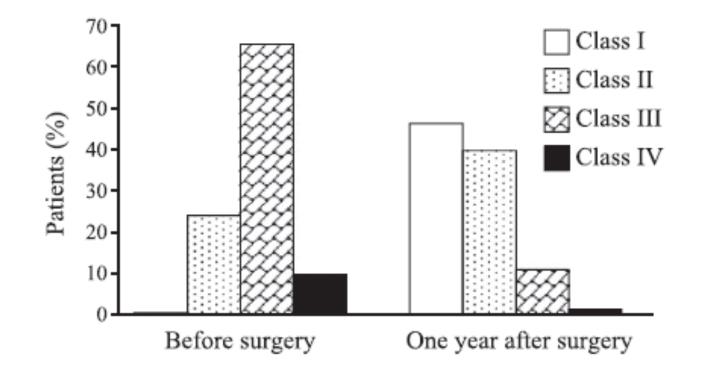


Rt PA endarterectomy





Survival After Successful PTE



Hemodynamics After PTE

NYHA Functional Pre and Post-PTE

J Thorac Cardiovasc Surg 2011

Ms. JS 31 yr old F Hx TVR 2013 for endocarditis Recurrent admissions for RV failure -> Dx CTEPH Went to Temple for PTE 8/2016 No significant post-op complications Discharged on sildenafil Still with some dyspnea on exertion but improved CT 5/2016 - RLL chronic V/Q 5/2016 - RUL, RU RHC: **Pre PTE Post PTE** RA 15 20 84/33 (50) 76/32 (47) PA (s/d/m) **PCWP** 2 17 CO 4.7 5 **PVR** 10.2 5.8

Persistent Pulmonary Hypertension

- 5-35% have persistent PH post-PTE
- Why?
 - Surgically inaccessible disease
 - Distal vasculopathy

Medical therapy for PH

Medical treatment

Table 1 Short-Term (3 to 6 Months) Effects of Medical Treatment in CTEPH

	First Author (Ref. #), Year	Study Design	Duration	n	NYHA	6MWD*	Effect	PVR	Effect
Epoprostenol (IV)	Cabrol et al. (48), 2007	-	3 months	23	III-IV	280 ± 112	66	(T) 29 \pm 7†	-21%
Treprostinil (SC)	Skoro-Sajer et al. (49), 2007	(T)	6 months	25	III-IV	260 ± 111	59	924 ± 347	-13%
lloprost (inh)	Olschewski et al. (50), 2002	RCT	3 months	57	III-IV	NA	NS	NA	NS
Sildenafil (PO)	Ghofrani et al. (51), 2003	-	6 months	12	NA	312 ± 30	54	$\textbf{1,935} \pm \textbf{228} \ddagger$	-30%
Sildenafil (PO)	Reichenberger et al. (52), 2007	-	3 months	104	II-IV	310 ± 11	51	863 ± 38	-12%
Sildenafil (PO)	Suntharalingam et al. (53), 2008	RCT	3 months	19	11-111	339 ± 58	18 (NS)	734 ± 363	- <mark>27%</mark>
Bosentan (PO)	Hoeper et al. (54), 2005	170	3 months	19	II-IV	340 ± 102	73	914 ± 329	-33%
Bosentan (PO)	Hughes et al. (55), 2005	-	3 months	20	II-IV	262 ± 106	45	(T) 1,165 ± 392	-21%
Bosentan (PO)	Bonderman et al. (56), 2005	-	6 months	16	II-IV	299 ± 131	92	$\textbf{712} \pm \textbf{213}$	NA
Bosentan (PO)	Seyfarth et al. (57), 2007	-	6 months	12	111	319 ± 85	72	$\textbf{1,008} \pm \textbf{428}$	NA
Bosentan (PO)	Jais et al. (58), 2008	RCT	4 months	157	II-IV	342 ± 84	2 (NS)	783 (703-861)	-24%
Riociguat (PO)	Ghofrani et al. (59), 2010	-	3 months	41	0-01	390 (330- <mark>44</mark> 1)	55	691 (533-844)	-29%
Riociguat (PO)	Ghofrani et al. (60), 2013	RCT	4 months	261	II-IV	347 ± 80	46	$\textbf{787} \pm \textbf{422}$	-31%

Riociguat (Adempas ®)

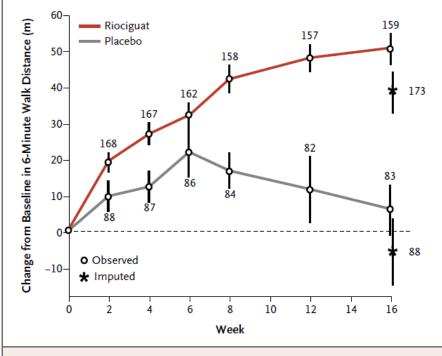


Figure 2. Mean Change from Baseline in the 6-Minute Walk Distance.

- CHEST-1 Trial
- N = 261, 16 wks
 - Inoperable 72%
 - Post-op 28%
- 个 6MWD 46 m
- \downarrow PVR by 2.8 WU
- ↓ NT-pro BNP
- \downarrow WHO class
- No Δ time-to-clinicalworsening

Take Home Message

- Riociguat for persistent PH after PTE or nonoperable disease
- Lifelong anticoagulation
- Do <u>NOT</u> deprive a patient of a life-saving procedure for medical management trial!

Summary

- After acute PE, most patients have anatomic and functional resolution
- CTEPH is rare consequence (1-4%) but high M&M, so have high index of clinical suspicion!
- Diagnosis:
 - Screening: V/Q scan
 - Confirmatory: RHC +/- PA gram
- Treatment: Pulmonary thromboendarterectomy (can be curative!)
- If inoperable or PH post-surgery: Riociguat